1.
Corno AF, Kocica
MJ, Torrent-Guasp F. The helical ventricular myocardial band of Torrent-Guasp:
potential implications in congenital heart defects. Eur J Cardiothorac Surg. 2006 Apr;29 Suppl 1:S61-68.
2.
Weisensee D, Seeger
T, Bittner A, Bereiter-Hahn J, Schoeppe W, Löw-Friedrich I. Cocultures of fetal
and adult cardiomyocytes yield rhythmically beating rod shaped heart cells from
adult rats. In Vitro Cell Dev Biol Anim. 1995 Mar;31(3):190-95.
3.
Boyden PA, Hirose
M, Dun W. Cardiac Purkinje cells. Heart Rhythm. 2010 Jan;7(1):127-35.
4.
Katz AM. Physiology
of the heart. 5th ed. Estados Unidos: Wolters Kluwer; 2011. p 297-12.
5.
Banerjee I, Fuseler
JW, Price RL, Borg TK, Baudino TA. Determination of cell types and numbers
during cardiac development in the neonatal and adult rat and mouse. Am J
Physiol Heart Circ Physiol. 2007 Sep;293(3):H1883-91.
6.
Jugdutt BI.
Ventricular remodeling after infarction and the extracellular collagen matrix:
when is enough enough? Circulation. 2003 Sep 16;108(11):1395-03. Review.
7.
Young AA, Legrice
IJ, Young MA, Smaill BH. Extended confocal microscopy of myocardial laminae and
collagen network. J Microsc. 1998 Nov;192(Pt 2):139-50.
8.
Borg TK, Ranson WF,
Moslehy FA, Caulfield JB. Structural basis of ventricular stiffness. Lab Invest.
1981 Jan;44(1):49-54.
9.
Camelliti P, Borg
TK, Kohl P. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc
Res. 2005 Jan 1;65(1):40-51.
10. Goldsmith EC, Hoffman A, Morales MO, Potts JD, Price
RL, McFadden A, Rice M, Borg TK. Organization of fibroblasts in the heart.
Dev Dyn. 2004 Aug;230(4):787-94.
11. Kohl P, Camelliti P, Burton FL, Smith GL. Electrical
coupling of fibroblasts and myocytes: relevance for cardiac propagation. J
Electrocardiol. 2005 Oct;38(4 Suppl):45-50.
12.
Baudino TA, Carver
W, Giles W, Borg TK. Cardiac fibroblasts: friend or foe? Am J Physiol Heart
Circ Physiol. 2006 Sep;291(3):H1015-26.
13.
Braunwald E. Heart
disease. 5th ed. Estados Unidos:W.B Saunders
Company;1997. p 360-64.
14. Goldsmith EC, Zhang X, Watson J, Hastings J, Potts JD.
The collagen receptor DDR2 is expressed during early cardiac development. Anat Rec
(Hoboken). 2010 May;293(5):762-69.
15. Camelliti P, Green CR, LeGrice I, Kohl P. Fibroblast
network in rabbit sinoatrial node: structural and functional identification of
homogeneous and heterogeneous cell coupling. Circ Res. 2004 Apr
2;94(6):828-35.
16. Kohl P. Cardiac cellular heterogeneity and
remodelling. Cardiovasc Res. 2004 Nov 1;64(2):195-97.
17. Zeisberg
EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker
A, Yuan X, Pu WT, Roberts AB, Neilson EG, Sayegh MH, Izumo S, Kalluri R.
Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med.
2007 Aug;13(8):952-61.
18. Mikawa T, Gourdie RG. Pericardial mesoderm generates a
population of coronary smooth muscle cells migrating into the heart along with
ingrowth of the epicardial organ. Dev Biol. 1996 Mar 15;174(2):221-32.
19. Lie-Venema
H, van den Akker NM, Bax NA, Winter EM, Maas S, Kekarainen T, Hoeben RC,
deRuiter MC, Poelmann RE, Gittenberger-de Groot AC. Origin, fate, and function of epicardium-derived cells (EPDCs) in normal
and abnormal cardiac development. ScientificWorldJournal. 2007 Nov
12;7:1777-98. Review.
20.
Wessels A,
Pérez-Pomares JM. The epicardium and epicardially derived cells (EPDCs) as
cardiac stem cells. Anat Rec A Discov Mol Cell Evol Biol. 2004
Jan;276(1):43-57. Review.
21.
Cossu G, Bianco P.
Mesoangioblasts -vascular progenitors for extravascular mesodermal tissues.
Curr Opin Genet Dev. 2003 Oct;13(5):537-42.
22. Vracko R, Thorning D. Contractile cells in rat
myocardial scar tissue. Lab Invest. 1991 Aug;65(2):214-27.
23. Abe R, Donnelly SC, Peng T, Bucala R, Metz CN. Peripheral blood fibrocytes: differentiation pathway and migration to
wound sites. J Immunol. 2001 Jun 15;166(12):7556-62.
24. van
Amerongen MJ, Harmsen MC, van Rooijen N, Petersen AH, van Luyn MJ. Macrophage depletion impairs wound healing and
increases left ventricular remodeling after myocardial injury in mice. Am J
Pathol. 2007 Mar;170(3):818-29.
25. Morimoto H, Takahashi M, Shiba Y, Izawa A, Ise H,
Hongo M, Hatake K, Motoyoshi K, Ikeda U. Bone marrow-derived CXCR4+ cells
mobilized by macrophage colony-stimulating factor participate in the reduction
of infarct area and improvement of cardiac remodeling after myocardial
infarction in mice. Am J Pathol. 2007 Sep;171(3):755-66.
26. Wojakowski W, Tendera M. Mobilization of bone
marrow-derived progenitor cells in acute coronary syndromes. Folia
Histochem Cytobiol. 2005;43(4):229-32.
27. Krenning G, Zeisberg EM, Kalluri R. The origin of
fibroblasts and mechanism of cardiac fibrosis. J Cell Physiol.
2010 Nov;225(3):631-37.
28. Gaudesius G, Miragoli M, Thomas SP, Rohr S. Coupling
of cardiac electrical activity over extended distances by fibroblasts of
cardiac origin. Circ Res. 2003 Sep 5;93(5):421-28
29. Eghbali M. Cardiac fibroblasts: function, regulation
of gene expression, and phenotypic modulation. Basic Res Cardiol.
1992;87 Suppl 2:183-89.
30. Ng CP, Hinz B, Swartz MA. Interstitial fluid flow
induces myofibroblast differentiation and collagen alignment in vitro. J Cell Sci.
2005 Oct 15;118(Pt 20):4731-39.
31. Banerjee I, Yekkala K, Borg TK, Baudino TA.Dynamic
interactions between myocytes, fibroblasts, and extracellular matrix. Ann N Y
Acad Sci. 2006 Oct;1080:76-84. Review.
32. Akiyama-Uchida
Y, Ashizawa N, Ohtsuru A, Seto S, Tsukazaki T, Kikuchi H, Yamashita S, Yano K.
Norepinephrine enhances fibrosis mediated by TGF-beta in cardiac fibroblasts.
Hypertension. 2002 Aug;40(2):148-54.
33. Miragoli M, Gaudesius G, Rohr S. Electrotonic
modulation of cardiac impulse conduction by myofibroblasts. Circ Res.
2006 Mar 31;98(6):801-10.
34. Kohl P, Kamkin AG, Kiseleva IS, Noble D.
Mechanosensitive fibroblasts in the sino-atrial node region of rat heart:
interaction with cardiomyocytes and possible role. Exp Physiol. 1994
Nov;79(6):943-56.
35. Van Agtmael T, Bruckner-Tuderman L. Basement membranes
and human disease. Cell Tissue Res. 2010 Jan;339(1):167-88. Review.
36. Kramer JM. Basement membranes. WormBook. 2005 Sep
1:1-15. Review.
37. LeBleu VS, Macdonald B, Kalluri R. Structure and
function of basement membranes. Exp Biol Med (Maywood). 2007
Oct;232(9):1121-29. Review.
38. Iozzo RV, Zoeller JJ, Nyström A. Basement membrane
proteoglycans: modulators Par Excellence of cancer growth and angiogenesis. Mol Cells.
2009 May 31;27(5):503-13. Review.
39. Harvey RP, Rosenthal N. Heart development. Estados
Unidos:Academic Press; 1999. p 234.
40. Mow VC, Wang CC, Hung CT. The extracellular matrix,
interstitial fluid and ions as a mechanical signal transducer in articular
cartilage. Osteoarthritis Cartilage. 1999 Jan;7(1):41-58.
41. Asundi VK, Keister BF, Stahl RC, Carey DJ.
Developmental and cell-type-specific expression of cell surface heparan sulfate
proteoglycans in the rat heart. Exp Cell Res. 1997 Jan 10;230(1):145-53.
42. Bandtlow CE, Zimmermann DR. Proteoglycans in the
developing brain: new conceptual insights for old proteins. Physiol
Rev. 2000 Oct;80(4):1267-90. Review.
43. Fomovsky GM, Thomopoulos S, Holmes JW. Contribution of extracellular matrix to the mechanical properties of the
heart. J Mol Cell Cardiol. 2010 Mar;48(3):490-96. Review.
44. Yoon JH, Halper J. Tendon proteoglycans: biochemistry
and function. J Musculoskelet Neuronal Interact. 2005 Mar;5(1):22-34.
Review.
45. Gandhi NS, Mancera RL. The structure of
glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des.
2008 Dec;72(6):455-82. Review.
46. Wu YJ, La
Pierre DP, Wu J, Yee AJ, Yang BB. The
interaction of versican with its binding partners. Cell Res. 2005
Jul;15(7):483-94. Review.
47. Souza-Fernandes AB, Pelosi P, Rocco PR. Bench-to-bedside review: the role of glycosaminoglycans in respiratory
disease. Crit Care. 2006;10(6):237. Review.
48. Ernst S, Langer R, Cooney CL, Sasisekharan R.
Enzymatic degradation of glycosaminoglycans. Crit Rev Biochem Mol
Biol. 1995;30(5):387-44. Review.
49. Götte M.
Syndecans in inflammation. FASEB J. 2003 Apr;17(6):575-91. Review.
50. Cavalcante LA, Garcia-Abreu J, Mendes FA, Moura Neto V, Silva LC, Onofre G,
Weissmüller G, Carvalho SL. Sulfated
proteoglycans as modulators of neuronal migration and axonal decussation in the
developing midbrain. Braz J Med Biol Res. 2003 Aug;36(8):993-02.
51. Westergren-Thorsson G, Hernnäs J, Särnstrand B,
Oldberg A, Heinegård D, Malmström A. Altered expression of small proteoglycans,
collagen, and transforming growth factor-beta 1 in developing bleomycin-induced
pulmonary fibrosis in rats. J Clin Invest. 1993 Aug;92(2):632-37.
52. Stringer SE. The role of heparan sulphate proteoglycans
in angiogenesis. Biochem Soc Trans. 2006 Jun;34(Pt 3):451-53.
53. Taylor KR, Gallo RL. Glycosaminoglycans and their
proteoglycans: host-associated molecular patterns for initiation and modulation
of inflammation. FASEB J. 2006 Jan;20(1):9-22. Review.
54. Bhagavan NV, Ha C. Essentials of medical biochemistry.
Estados
Unidos: Academic Press; 2011. p 94.
55. Mecham RP. The extracelular matrix: an overview. Estados
Unidos: Springer; 2011. p 91-92, p 162,
p 176.
56. Trowbridge JM, Gallo RL. Dermatan sulfate: new functions
from an old glycosaminoglycan. Glycobiology. 2002 Sep;12(9):117R-25R.
Review.
57. Fisher LW, Termine JD, Young MF. Deduced protein
sequence of bone small proteoglycan I (biglycan) shows homology with
proteoglycan II (decorin) and several nonconnective tissue proteins in a
variety of species. J Biol Chem. 1989 Mar 15;264(8):4571-76.
58. Westergren-Thorsson G, Schmidtchen A, Särnstrand B,
Fransson LA, Malmström A. Transforming growth factor-beta induces selective
increase of proteoglycan production and changes in the copolymeric structure of
dermatan sulphate in human skin fibroblasts. Eur J Biochem. 1992
Apr 1;205(1):277-86.
59. Day AA, McQuillan CI, Termine JD, Young MR. Molecular
cloning and sequence analysis of the cDNA for small proteoglycan II of bovine
bone. Biochem J. 1987 Dec 15;248(3):801-05.
60. Farach-Carson MC, Carson DD. Perlecan--a
multifunctional extracellular proteoglycan scaffold. Glycobiology. 2007
Sep;17(9):897-05.
61.
Bezakova G, Ruegg
MA. New insights into the roles of agrin. Nat Rev Mol Cell Biol. 2003 Apr;4(4):295-08.
62. Iozzo RV. Basement membrane proteoglycans: from cellar
to ceiling. Nat Rev Mol Cell Biol. 2005 Aug;6(8):646-56.
63. Nader HB, Ferreira TM, Paiva JF, Medeiros MG, Jerônimo SM, Paiva VM,
Dietrich CP. Isolation and structural studies of
heparan sulfates and chondroitin sulfates from three species of molluscs. J Biol
Chem. 1984 Feb 10;259(3):1431-35.
64. Funderburgh JL. Keratan sulfate: structure,
biosynthesis, and function. Glycobiology. 2000 Oct;10(10):951-58.
65. Funderburgh JL. Keratan sulfate biosynthesis. IUBMB Life. 2002
Oct;54(4):187-94. Review.
66. Krusius T, Finne J, Margolis RK, Margolis RU.
Identification of an O-glycosidic mannose-linked sialylated tetrasaccharide and
keratan sulfate oligosaccharides in the chondroitin sulfate proteoglycan of
brain. J Biol Chem. 1986 Jun 25;261(18):8237-42.
67. Gerdin B, Hällgren R. Dynamic role of hyaluronan (HYA)
in connective tissue activation and inflammation. J Intern Med. 1997
Jul;242(1):49-55.
68. Turino GM, Cantor JO. Hyaluronan in respiratory injury
and repair. Am J Respir Crit Care Med. 2003 May 1;167(9):1169-75.
69. Hou S, Xu Q, Tian W, Cui F, Cai Q, Ma J, Lee IS. The
repair of brain lesion by implantation of hyaluronic acid hydrogels modified
with laminin. J Neurosci Methods. 2005 Oct 15;148(1):60-70.
70. Yang JA, Park K, Jung H, Kim H, Hong SW, Yoon SK, Hahn
SK. Target specific hyaluronic acid-interferon alpha conjugate for the
treatment of hepatitis C virus infection. Biomaterials. 2011
Aug 25. [Epub ahead of print]
71.
Prydz K, Dalen KT.
Synthesis and sorting of proteoglycans. J Cell Sci. 2000 Jan;113 Pt 2:193-05.
72. Yamaguchi Y. Lecticans: organizers of the brain
extracellular matrix. Cell Mol Life Sci. 2000 Feb;57(2):276-89.
73. Viapiano MS, Matthews RT. From barriers to bridges:
chondroitin sulfate proteoglycans in neuropathology. Trends Mol Med.
2006 Oct;12(10):488-96.
74. Aspberg A,
Miura R, Bourdoulous S, Shimonaka M, Heinegârd D, Schachner M, Ruoslahti E,
Yamaguchi Y. The C-type lectin domains of lecticans, a family of aggregating
chondroitin sulfate proteoglycans, bind tenascin-R by protein-protein
interactions independent of carbohydrate moiety. Proc Natl Acad Sci U S A. 1997
Sep 16;94(19):10116-21.
75. Oohira A, Matsui F, Tokita Y, Yamauchi S, Aono S.
Molecular interactions of neural chondroitin sulfate proteoglycans in the brain
development. Arch Biochem Biophys. 2000 Feb 1;374(1):24-34.
76. Jones GC, Riley GP. ADAMTS proteinases: a multi-domain, multi-functional family
with roles in extracellular matrix turnover and arthritis. Arthritis
Res Ther. 2005;7(4):160-9.
77. Henderson DJ, Copp AJ. Versican expression is
associated with chamber specification, septation, and valvulogenesis in the
developing mouse heart. Circ Res. 1998 Sep 7;83(5):523-32
78. Ito K, Shinomura T, Zako M, Ujita M, Kimata K.
Multiple forms of mouse PG-M, a large chondroitin sulfate proteoglycan
generated by alternative splicing. J Biol Chem. 1995 Jan 13;270(2):958-65.
79. Merline R, Schaefer RM, Schaefer L.The matricellular
functions of small leucine-rich proteoglycans (SLRPs). J Cell Commun
Signal. 2009 Dec;3(3-4):323-35.
80. Huxley-Jones J, Robertson DL, Boot-Handford RP. On the
origins of the extracellular matrix in vertebrates. Matrix Biol. 2007
Jan;26(1):2-11.
81. Iozzo RV. Matrix proteoglycans: from molecular design
to cellular function. Annu Rev Biochem. 1998;67:609-52. Review
82. McEwan PA, Scott PG, Bishop PN, Bella J. Structural
correlations in the family of small leucine-rich repeat proteins and
proteoglycans. J Struct Biol. 2006 Aug;155(2):294-305.
83. Schaefer L, Iozzo RV. Biological functions of the
small leucine-rich proteoglycans: from genetics to signal transduction. J Biol
Chem. 2008 Aug 1;283(31):213050-9.
84. Brandan E, Cabello-Verrugio C, Vial C. Novel
regulatory mechanisms for the proteoglycans decorin and biglycan during muscle
formation and muscular dystrophy. Matrix Biol. 2008 Oct;27(8):700-08.
85. Perrimon N, Bernfield M. Cellular functions of
proteoglycans--an overview. Semin Cell Dev Biol. 2001 Apr;12(2):65-67.
86. Geng Y, McQuillan D, Roughley P. SLRP interaction can
protect collagen fibrils from cleavage by collagenases. Matrix Biol. 2006
Oct;25(8):484-91.
87. Reed CC, Iozzo RV. The role of decorin in collagen
fibrillogenesis and skin
homeostasis. Glycoconj J. 2002 May-Jun;19(4-5):249-55.
88. Ameye L, Young MF. Mice deficient in small
leucine-rich proteoglycans: novel in vivo models for osteoporosis,
osteoarthritis, Ehlers-Danlos syndrome, muscular dystrophy, and corneal
diseases. Glycobiology. 2002 Sep;12(9):107R-16R.
89. Scott JE, Orford CR, Hughes EW. Proteoglycan-collagen
arrangements in developing rat tail tendon. An electron
microscopical and biochemical investigation. Biochem J. 1981 Jun
1;195(3):573-81.
90. Thieszen SL, Rosenquist TH. Expression of collagens
and decorin during aortic arch artery development: implications for matrix
pattern formation. Matrix Biol. 1995 Jul;14(7):573-82.
91. Bidanset DJ, Guidry C, Rosenberg LC, Choi HU, Timpl R,
Hook M. Binding of the proteoglycan decorin to collagen type VI. J Biol
Chem. 1992 Mar 15;267(8):5250-6.
92. Nakajima A,
Ito Y, Asano M, Maeno M, Iwata K, Mitsui N, Shimizu N, Cui XM, Shuler CF. Functional role of transforming growth factor-beta
type III receptor during palatal fusion. Dev Dyn. 2007 Mar;236(3):791-801.
93. Danielson
KG, Baribault H, Holmes DF, Graham H, Kadler KE, Iozzo RV. Targeted disruption of decorin leads to abnormal
collagen fibril morphology and skin fragility. J Cell Biol. 1997
Feb 10;136(3):729-43.
94. Michelacci YM. Collagens and proteoglycans of the
corneal extracellular matrix. Braz J Med Biol Res. 2003
Aug;36(8):1037-46.
95. Kruegel J, Miosge N. Basement membrane components are
key players in specialized extracellular matrices. Cell Mol Life Sci.
2010 Sep;67(17):2879-95. Review.
96. Costell M, Gustafsson E, Aszódi A, Mörgelin M, Bloch
W, Hunziker E, Addicks K, Timpl R, Fässler R. Perlecan maintains the integrity
of cartilage and some basement membranes. J Cell Biol. 1999
Nov 29;147(5):1109-22.
97.
Durbeej M.
Laminins. Cell Tissue Res. 2010 Jan;339(1):259-68. Review.
98. Peng HB, Ali AA, Daggett DF, Rauvala H, Hassell JR,
Smalheiser NR. The relationship between perlecan and dystroglycan and its
implication in the formation of the neuromuscular junction. Cell Adhes
Commun. 1998 Sep;5(6):475-89.
99. Whitelock JM, Melrose J, Iozzo RV. Diverse cell
signaling events modulated by perlecan. Biochemistry. 2008 Oct
28;47(43):11174-83. Review.
100. Mongiat M, Sweeney SM, San Antonio JD, Fu J, Iozzo RV.
Endorepellin, a novel inhibitor of angiogenesis derived from the C terminus of
perlecan. J Biol Chem. 2003 Feb 7;278(6):4238-49.
101. Ruegg MA. Agrin, laminin beta 2 (s-laminin) and ARIA:
their role in neuromuscular development. Curr Opin Neurobiol. 1996
Feb;6(1):97-03. Review.
102. Tomono Y, Naito I, Ando K, Yonezawa T, Sado Y,
Hirakawa S, Arata J, Okigaki T, Ninomiya Y. Epitope-defined monoclonal
antibodies against multiplexin collagens demonstrate that type XV and XVIII
collagens are expressed in specialized basement membranes. Cell Struct
Funct. 2002 Feb;27(1):9-20.
103. Brodsky B, Persikov AV. Molecular structure of the
collagen triple helix. Adv Protein Chem. 2005;70:301-39.
104. van der Rest M, Garrone R. Collagen family of
proteins. FASEB J. 1991 Oct;5(13):2814-23.
105. Bella J, Liu J, Kramer R, Brodsky B, Berman HM.
Conformational effects of Gly-X-Gly interruptions in the collagen triple helix.
J
Mol Biol. 2006 Sep 15;362(2):298-11.
106. Myllyharju J, Kivirikko KI. Collagens and
collagen-related diseases. Ann Med. 2001 Feb;33(1):7-21.
107. Fleischmajer R, Perlish JS, Timpl R, Olsen BR.
Procollagen intermediates during tendon fibrillogenesis. J Histochem
Cytochem. 1988 Nov;36(11):1425-32.
108. Eyre DR, Paz MA, Gallop PM. Cross-linking in
collagen and elastin. Annu Rev Biochem. 1984;53:717-48.
109. Prockop DJ, Fertala A. Inhibition of the self-assembly
of collagen I into fibrils with synthetic peptides. Demonstration that assembly
is driven by specific binding sites on the monomers. J Biol Chem. 1998
Jun 19;273(25):15598-04.
110. Swynghedauw B. Molecular mechanisms of myocardial
remodeling. Physiol Rev. 1999 Jan;79(1):215-62.
111. Wu JJ, Woods PE, Eyre DR. Identification of
cross-linking sites in bovine cartilage type IX collagen reveals an
antiparallel type II-type IX molecular relationship and type IX to type IX
bonding. J Biol Chem. 1992 Nov 15;267(32):23007-14.
112. Keene DR, Lunstrum GP, Morris NP, Stoddard DW,
Burgeson RE. Two type XII-like collagens localize to the surface of banded
collagen fibrils. J Cell Biol. 1991 May;113(4):971-78.
113. Young BB, Gordon MK, Birk DE. Expression of type XIV
collagen in developing chicken tendons: association with assembly and growth of
collagen fibrils. Dev Dyn. 2000 Apr;217(4):430-39.
114. Font B, Eichenberger D, Rosenberg LM, van der Rest M.
Characterization of the interactions of type XII collagen with two small
proteoglycans from fetal bovine tendon, decorin and fibromodulin. Matrix
Biol. 1996 Nov;15(5):341-48.
115. Knupp C, Squire JM. Molecular packing in
network-forming collagens. Adv Protein Chem. 2005;70:375-03.
116. Noelken ME, Reddy GK, Kalluri R, Gunwar S, Hudson BG.
The chain composition of aorta basement membrane collagen IV, localization of
the chains in aorta and supramolecular assembly of the collagen IV protomers. Contrib
Nephrol. 1994;107:216-19.
117.
Khoshnoodi J, Pedchenko V, Hudson BG. Mammalian collagen IV. Microsc Res Tech. 2008
May;71(5):357-70.
118. Leitinger B, Hohenester E. Mammalian collagen
receptors. Matrix Biol. 2007 Apr;26(3):146-55.
119. Keene DR, Sakai LY, Lunstrum GP, Morris NP, Burgeson
RE. Type VII collagen forms an extended network of anchoring fibrils. J Cell
Biol. 1987 Mar;104(3):611-21.
120. Järvikallio A, Pulkkinen L, Uitto J. Molecular basis
of dystrophic epidermolysis bullosa: mutations in the type VII collagen gene
(COL7A1). Hum Mutat. 1997;10(5):338-47.
121. Lunstrum
GP, Kuo HJ, Rosenbaum LM, Keene DR, Glanville RW, Sakai LY, Burgeson RE. Anchoring fibrils contain the carboxyl-terminal
globular domain of type VII procollagen, but lack the amino-terminal globular
domain. J Biol Chem. 1987 Oct 5;262(28):13706-12.
122. Chen M, Marinkovich MP, Veis A, Cai X, Rao CN, O'Toole
EA, Woodley DT. Interactions of the amino-terminal noncollagenous (NC1) domain
of type VII collagen with extracellular matrix components. A potential role in
epidermal-dermal adherence in human skin. J Biol Chem. 1997
Jun 6;272(23):14516-22.
123. Brittingham R, Uitto J, Fertala A. High-affinity
binding of the NC1 domain of collagen VII to laminin 5 and collagen IV. Biochem
Biophys Res Commun. 2006 May 12;343(3):692-9.
124. Wiberg C, Klatt AR, Wagener R, Paulsson M, Bateman JF,
Heinegård D, Mörgelin M. Complexes of matrilin-1 and biglycan or decorin
connect collagen VI microfibrils to both collagen II and aggrecan. J Biol Chem.
2003 Sep 26;278(39):37698-04.
125.
Lampe AK, Bushby
KM. Collagen VI related muscle disorders. J Med Genet. 2005 Sep;42(9):673-85.
Review.
126. Kanagawa M, Toda T. The genetic and molecular basis of
muscular dystrophy: roles of cell-matrix linkage in the pathogenesis. J Hum
Genet. 2006;51(11):915-26.
127. Amenta PS, Scivoletti NA, Newman MD, Sciancalepore JP, Li D, Myers JC.
Proteoglycan-collagen XV in human tissues is seen linking banded collagen
fibers subjacent to the basement membrane. J Histochem Cytochem. 2005
Feb;53(2):165-76.
128. Hurskainen M, Eklund L, Hägg PO, Fruttiger M, Sormunen
R, Ilves M, Pihlajaniemi T. Abnormal maturation of the retinal vasculature in
type XVIII collagen/endostatin deficient mice and changes in retinal glial
cells due to lack of collagen types XV and XVIII. FASEB J. 2005
Sep;19(11):1564-66.
129. Hurskainen
M, Ruggiero F, Hägg P, Pihlajaniemi T, Huhtala P. Recombinant human collagen XV
regulates cell adhesion and migration. J Biol Chem. 2010 Feb 19;285(8):5258-65.
130. Fu Y, Tang H, Huang Y, Song N, Luo Y. Unraveling the
mysteries of endostatin. IUBMB Life. 2009 Jun;61(6):613-26.
131. Maertens B, Hopkins D, Franzke CW, Keene DR,
Bruckner-Tuderman L, Greenspan DS, Koch M. Cleavage and oligomerization of
gliomedin, a transmembrane collagen required for node of ranvier formation. J Biol
Chem. 2007 Apr 6;282(14):10647-59.
132. Bhattacharjee A, Bansal M. Collagen structure: the
Madras triple helix and the current scenario. IUBMB Life. 2005
Mar;57(3):161-72.
133. Kalluri R. Basement membranes: structure, assembly and
role in tumour angiogenesis. Nat Rev Cancer. 2003 Jun;3(6):422-33.
134. Kania AM, Reichenberger E, Baur ST, Karimbux NY,
Taylor RW, Olsen BR, Nishimura I. Structural variation of type XII collagen at
its carboxyl-terminal NC1 domain generated by tissue-specific alternative
splicing. J Biol Chem. 1999 Jul 30;274(31):22053-59.
135. Myllyharju J, Kivirikko KI. Collagens, modifying
enzymes and their mutations in humans, flies and worms. Trends Genet. 2004
Jan;20(1):33-43.
136. Mann M, Jensen ON. Proteomic analysis of
post-translational modifications. Nat Biotechnol. 2003 Mar;21(3):255-61.
Review.
137. Medzihradszky KF. Characterization of protein
N-glycosylation. Methods Enzymol. 2005;405:116-38. Review.
138. Peter-Katalinić J. Methods in enzymology:
O-glycosylation of proteins. Methods Enzymol. 2005;405:139-71. Review.
139. Solá RJ, Rodríguez-Martínez JA, Griebenow K. Modulation
of protein biophysical properties by chemical glycosylation: biochemical
insights and biomedical implications. Cell Mol Life Sci. 2007
Aug;64(16):2133-52.
140. Adams JC. Methods in cell matrix adhesion. Estados
Unidos: Elsevier; 2002. p 118.
141.
Fishman D, Irena B,
Kellman-Pressman S, Karas M, Segal S. The role of MHC class I glycoproteins in
the regulation of induction of cell death in immunocytes by malignant melanoma
cells.Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1740-44.
142. Tuloup-Minguez V, Greffard A, Codogno P, Botti J.
Regulation of autophagy by extracellular matrix glycoproteins in HeLa cells. Autophagy.
2011 Jan;7(1):27-39.
143.
Sasaki T, Fässler
R, Hohenester E. Laminin: the crux of basement membrane assembly. J Cell Biol.
2004 Mar 29;164(7):959-63.
144.
Schwarzbauer JE,
Sechler JL. Fibronectin fibrillogenesis: a paradigm for extracellular matrix
assembly. Curr Opin Cell Biol. 1999 Oct;11(5):622-27.
145. Miner JH. Laminins and their roles in mammals. Microsc Res
Tech. 2008 May;71(5):349-56.
146. Tzu J, Marinkovich MP. Bridging structure with
function: structural, regulatory, and developmental role of laminins. Int J Biochem
Cell Biol. 2008;40(2):199-14.
147. Cheng YS, Champliaud MF, Burgeson RE, Marinkovich MP,
Yurchenco PD. Self-assembly of laminin isoforms. J Biol Chem. 1997 Dec
12;272(50):31525-32.
148. Peters JH, Chen GE, Hynes RO. Fibronectin isoform
distribution in the mouse. II. Differential distribution of the alternatively
spliced EIIIB, EIIIA, and V segments in the adult mouse. Cell Adhes Commun.
1996 Aug;4(2):127-48.
149. Magnusson MK, Mosher DF. Fibronectin: structure,
assembly, and cardiovascular implications. Arterioscler Thromb
Vasc Biol. 1998 Sep;18(9):1363-70. Review.
150. Bornstein P. Diversity of function is inherent in
matricellular proteins: an appraisal of thrombospondin 1. J Cell Biol. 1995
Aug;130(3):503-06.
151. Schultz GS, Wysocki A. Interactions between
extracellular matrix and growth factors in wound healing. Wound Repair Regen.
2009 Mar-Apr;17(2):153-62.
152. Yan Q, Sage EH. SPARC, a matricellular glycoprotein
with important biological functions. J Histochem Cytochem. 1999
Dec;47(12):1495-06.
153. Humphries
MJ. Integrin structure. Biochem Soc Trans. 2000;28(4):311-39.
154. Wylie DE, Damsky CH, Buck CA. Studies on the function
of cell surface glycoproteins. I. Use of antisera to surface membranes in the
identification of membrane components relevant to cell-substrate adhesion. J Cell
Biol. 1979 Feb;80(2):385-02.
155.
Takada Y, Ye X,
Simon S. The integrins. Genome Biol. 2007;8(5):215.
156. Maitra N, Flink IL, Bahl JJ, Morkin E. Expression of
alpha and beta integrins during terminal differentiation of cardiomyocytes. Cardiovasc
Res. 2000 Sep;47(4):715-25.
157. Brancaccio M, Hirsch E, Notte A, Selvetella G, Lembo
G, Tarone G. Integrin signalling: the tug-of-war in heart hypertrophy. Cardiovasc
Res. 2006 Jun 1;70(3):422-33.
158. Barczyk M, Carracedo S, Gullberg D. Integrins. Cell Tissue Res.
2010 Jan;339(1):269-80.
159. Geiger B, Spatz JP, Bershadsky AD. Environmental
sensing through focal adhesions. Nat Rev Mol Cell Biol. 2009
Jan;10(1):21-33.
160. Tkachenko E, Rhodes JM, Simons M. Syndecans: new kids
on the signaling block. Circ Res. 2005 Mar 18;96(5):488-00.
161. Okamoto O, Bachy S, Odenthal U, Bernaud J, Rigal D,
Lortat-Jacob H, Smyth N, Rousselle P. Normal human keratinocytes bind to the
alpha3LG4/5 domain of unprocessed laminin-5 through the receptor syndecan-1. J Biol
Chem. 2003 Nov 7;278(45):44168-77.
162. Granés F, Berndt C, Roy C, Mangeat P, Reina M, Vilaró
S. Identification of a novel Ezrin-binding site in syndecan-2 cytoplasmic
domain. FEBS Lett. 2003 Jul 17;547(1-3):212-6.
163. Schellings
MW, Vanhoutte D, van Almen GC, Swinnen M, Leenders JJ, Kubben N, van Leeuwen
RE, Hofstra L, Heymans S, Pinto YM. Syndecan-1 amplifies angiotensin II-induced
cardiac fibrosis. Hypertension. 2010 Feb;55(2):249-56.
164. Ervasti JM, Campbell KP. Membrane organization of the
dystrophin-glycoprotein complex. Cell. 1991 Sep 20;66(6):1121-31.
165.
Michele DE,
Campbell KP. Dystrophin-glycoprotein complex: post-translational processing and
dystroglycan function. J Biol Chem. 2003 May 2;278(18):15457-60.
166. Greenfield B, Wang WC, Marquardt H, Piepkorn M, Wolff
EA, Aruffo A, Bennett KL. Characterization of the heparan sulfate and
chondroitin sulfate assembly sites in CD44. J Biol Chem. 1999
Jan 22;274(4):2511-17
167. Aruffo A, Stamenkovic I, Melnick M, Underhill CB, Seed
B. CD44 is the principal cell surface receptor for hyaluronate. Cell. 1990
Jun 29;61(7):1303-13.
168. Iczkowski
KA, Omara-Opyene AL, Shah GV. The predominant
CD44 splice variant in prostate cancer binds fibronectin, and calcitonin
stimulates its expression. Anticancer Res. 2006
Jul-Aug;26(4B):2863-72.
169.
Cichy J, Bals R,
Potempa J, Mani A, Puré E. Proteinase-mediated release of epithelial
cell-associated CD44. Extracellular CD44 complexes with components of cellular
matrices. J Biol Chem. 2002 Nov 15;277(46):44440-47.
170. Culty M, Nguyen HA, Underhill CB. The hyaluronan
receptor (CD44) participates in the uptake and degradation of hyaluronan. J Cell
Biol. 1992 Feb;116(4):1055-62.
171. Vogel W. Discoidin domain receptors: structural
relations and functional implications. FASEB J. 1999;13 Suppl:S77-82. Review.
172.
Jeffrey JJ.
Regulation of matrix accumulation. Estados Unidos: Academic Press; 1986. p
53-98.
173. Cleutjens JP. The role of matrix metalloproteinases in
heart disease. Cardiovasc Res. 1996 Nov;32(5):816-21. Review.
174. Suzuki K, Lees M, Newlands GF, Nagase H, Woolley DE.
Activation of precursors for matrix metalloproteinases 1 (interstitial
collagenase) and 3 (stromelysin) by rat mast-cell proteinases I and II. Biochem J.
1995 Jan 1;305 ( Pt 1):301-06.
175. Spinale FG. Myocardial matrix remodeling and the
matrix metalloproteinases: influence on cardiac form and function. Physiol
Rev. 2007 Oct;87(4):1285-42.
176. Spinale FG, Wilbur NM. Matrix metalloproteinase
therapy in heart failure. Curr Treat Options Cardiovasc Med. 2009
Aug;11(4):339-46.
177. Didangelos A, Yin X, Mandal K, Saje A, Smith A, Xu Q,
Jahangiri M, Mayr M. Extracellular matrix composition and remodeling in human
abdominal aortic aneurysms: a proteomics approach. Mol Cell
Proteomics. 2011 Aug;10(8):M111.008128.
178. Somerville RP, Oblander SA, Apte SS. Matrix metalloproteinases: old dogs with new tricks. Genome
Biol. 2003;4(6):216.
179.
Gearing AJ, Beckett
P, Christodoulou M, Churchill M, Clements JM, Crimmin M, Davidson AH, Drummond
AH, Galloway WA, Gilbert R, et al. Matrix metalloproteinases and processing of
pro-TNF-alpha. J Leukoc Biol. 1995 May;57(5):774-77.
180. Hwang IK, Park SM, Kim SY, Lee ST. A proteomic
approach to identify substrates of matrix metalloproteinase-14 in human plasma.
Biochim
Biophys Acta. 2004 Oct 1;1702(1):79-87.
181. Lee S,
Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe ML. Processing of VEGF-A by matrix metalloproteinases regulates
bioavailability and vascular patterning in tumors. J Cell Biol. 2005
May 23;169(4):681-91.
182. Woessner JF Jr, Nagase H. Activation of the zymogen
forms of MMPs. Matrix Metalloproteinases. Reino Unido: Oxford University
Press; 2003. p72-86.
183.
Greene J, Wang M,
Liu YE, Raymond LA, Rosen C, Shi YE. Molecular cloning and characterization of
human tissue inhibitor of metalloproteinase 4.J Biol Chem. 1996 Nov 29;271(48):30375-80.
184. Brew K, Nagase H. The tissue inhibitors of
metalloproteinases (TIMPs): an ancient family with structural and functional
diversity. Biochim Biophys Acta. 2010 Jan;1803(1):55-71.
185. Deschamps AM, Spinale FG. Pathways of matrix
metalloproteinase induction in heart failure: bioactive molecules and
transcriptional regulation. Cardiovasc Res. 2006 Feb 15;69(3):666-76.
Review.
186.
Tong W, Xue Q, Li
Y, Zhang L. Maternal hypoxia alters matrix metalloproteinase expression
patterns and causes cardiac remodeling in fetal and neonatal rats. Am J Physiol
Heart Circ Physiol. 2011 Aug 19. [Epub ahead of print]
187. Kandasamy AD, Chow AK, Ali MA, Schulz R. Matrix
metalloproteinase-2 and myocardial oxidative stress injury: beyond the matrix. Cardiovasc
Res. 2010 Feb 1;85(3):413-23. Review.
188. Felker GM, Shaw LK, O'Connor CM. A standardized
definition of ischemic cardiomyopathy for use in clinical research. J Am Coll
Cardiol. 2002 Jan 16;39(2):210-8.
189. World Health Organization. The global burdem of
disease: 2004 update. Suiza: WHO Press; 2008. p 65.
190. Leal J, Luengo-Fernández R, Gray A, Petersen S, Rayner
M. Economic burden of cardiovascular diseases in the enlarged European Union. Eur Heart
J. 2006 Jul;27(13):1610-19.
191. American Heart Association Statistics Committee and
Stroke Statistics Subcommittee. Heart disease and stroke statistics--2010
update: a report from the American Heart Association. Circulation. 2010
Feb 23;121(7):e46-e215.
192.
Gaziano TA.
Reducing the growing burden of cardiovascular disease in the developing world. Health Aff
(Millwood). 2007 Jan-Feb;26(1):13-24.
193.
Jaffer AB, Lerner
J, Stern S. Innovation policy and the economy. Vol. 3. Estados Unidos: Mit
Press; 2003. p 104.
194. Herrick JB
1912
195. Dawber TR, Meadors GF, Moore FE Jr. Epidemiological
approaches to heart disease: the Framingham Study. Am J Public Health
Nations Health. 1951 Mar;41(3):279-81.
196. Reiner Körfer (interview). The Heart-Makers: The Future of Transplant
Medicine. [documentary film]. Alemania: LOOKS film and television; 2007.
197. Deschamps
JY, Roux FA, Saï P, Gouin E. History of xenotransplantation. Xenotransplantation.
2005 Mar;12(2):91-09.
198. Bailey LL, Nehlsen-Cannarella SL, Concepcion W, Jolley
WB. Baboon-to-human cardiac xenotransplantation in a neonate. JAMA. 1985
Dec 20;254(23):3321-29.
199.
Melo LG, Pachori AS, Kong D, Gnecchi M,
Wang K, Pratt RE, Dzau VJ. Gene and cell-based
therapies for heart disease. FASEB J. 2004 Apr;18(6):648-63.
200. Abbasi M, Javan H, Alizadeh B, Afzalnia S. Can
intracoronary stem cell injection permanently improve cardiac function after
myocardial infarction? Interact Cardiovasc Thorac Surg. 2011 Feb;12(2):229-31.
201. Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM,
Netoff TI, Taylor DA. Perfusion-decellularized matrix: using nature's platform
to engineer a bioartificial heart. Nat Med. 2008 Feb;14(2):213-21.
202. Lee KL,
Woodlief LH, Topol EJ, Weaver WD, Betriu A, Col J, Simoons M, Aylward P, Van de
Werf F, Califf RM. Predictors of 30-day mortality
in the era of reperfusion for acute myocardial infarction. Results from an
international trial of 41,021 patients. GUSTO-I Investigators. Circulation.
1995 Mar 15;91(6):1659-68.
203. An international randomized trial comparing four
thrombolytic strategies for acute myocardial infarction. The GUSTO
investigators. N Engl J Med. 1993 Sep 2;329(10):673-82.
204. Meijs MF,
de Windt LJ, de Jonge N, Cramer MJ, Bots ML, Mali WP, Doevendans PA. Left
ventricular hypertrophy: a shift in paradigm. Curr Med Chem. 2007;14(2):157-71.
205. Kessler-Icekson G, Sperling O, Rotem C, Wasserman L.
Cardiomyocytes cultured in serum-free medium. Growth and creatine
kinase activity. Exp Cell Res. 1984 Nov;155(1):113-20.
206. Sheikh F, Ross RS, Chen J. Cell-cell connection to
cardiac disease. Trends Cardiovasc Med. 2009 Aug;19(6):182-90.
207. Rossini R, Senni M, Musumeci G, Ferrazzi P, Gavazzi A.
Prevention of left ventricular remodelling after acute myocardial infarction:
an update. Recent Pat Cardiovasc Drug Discov. 2010 Nov;5(3):196-07.
208. Weber KT. Monitoring tissue repair and fibrosis from a
distance. Circulation. 1997 Oct 21;96(8):2488-92. Review.
209. Vasquez C,
Benamer N, Morley GE. The cardiac
fibroblast: functional and electrophysiological considerations in healthy and
diseased hearts. J Cardiovasc Pharmacol. 2011 Apr;57(4):380-88.
210. Matsui Y, Morimoto J, Uede T. Role of matricellular
proteins in cardiac tissue remodeling after myocardial infarction. World J
Biol Chem. 2010 May 26;1(5):69-80.
211. Cao Y. Therapeutic angiogenesis for ischemic
disorders: what is missing for clinical benefits? Discov Med. 2010
Mar;9(46):179-84.
212. Eriksson A, Cao R, Roy J, Tritsaris K, Wahlestedt C,
Dissing S, Thyberg J, Cao Y. Small GTP-binding protein Rac is an essential
mediator of vascular endothelial growth factor-induced endothelial
fenestrations and vascular permeability. Circulation. 2003 Mar
25;107(11):1532-38.
213. Senger DR, Perruzzi CA, Feder J, Dvorak HF. A highly
conserved vascular permeability factor secreted by a variety of human and
rodent tumor cell lines. Cancer Res. 1986 Nov;46(11):5629-32.
214. Rosenkranz S. TGF-beta1 and angiotensin networking in
cardiac remodeling. Cardiovasc Res. 2004 Aug 15;63(3):423-32.
215. Nakamura Y, Yoshiyama M, Omura T, Yoshida K, Izumi Y,
Takeuchi K, Kim S, Iwao H, Yoshikawa J. Beneficial effects of combination of
ACE inhibitor and angiotensin II type 1 receptor blocker on cardiac remodeling
in rat myocardial infarction. Cardiovasc Res. 2003 Jan;57(1):48-54.
216. Kim S, Yoshiyama M, Izumi Y, Kawano H, Kimoto M, Zhan
Y, Iwao H. Effects of combination of ACE inhibitor and angiotensin receptor
blocker on cardiac remodeling, cardiac function, and survival in rat heart failure.
Circulation.
2001 Jan 2;103(1):148-54.
217. McMurray JJ, Ostergren J, Swedberg K, Granger CB, Held
P, Michelson EL, Olofsson B, Yusuf S, Pfeffer MA; CHARM Investigators and
Committees. Effects of candesartan in patients with chronic heart failure and
reduced left-ventricular systolic function taking angiotensin-converting-enzyme
inhibitors: the CHARM-Added trial. Lancet. 2003 Sep 6;362(9386):767-71.
218. Pfeffer MA,
McMurray JJ, Velazquez EJ, Rouleau JL, Køber L, Maggioni AP, Solomon SD,
Swedberg K, Van de Werf F, White H, Leimberger JD, Henis M, Edwards S,
Zelenkofske S, Sellers MA, Califf RM; Valsartan in Acute Myocardial Infarction
Trial Investigators. Valsartan,
captopril, or both in myocardial infarction complicated by heart failure, left
ventricular dysfunction, or both. N Engl J Med. 2003 Nov 13;349(20):1893-06.
219. Wenzel S, Taimor G, Piper HM, Schlüter KD.
Redox-sensitive intermediates mediate angiotensin II-induced p38 MAP kinase
activation, AP-1 binding activity, and TGF-beta expression in adult ventricular
cardiomyocytes. FASEB J. 2001 Oct;15(12):2291-93.
220. Schultz Jel
J, Witt SA, Glascock BJ, Nieman ML, Reiser PJ, Nix SL, Kimball TR, Doetschman
T. TGF-beta1 mediates the hypertrophic cardiomyocyte growth induced by
angiotensin II. J Clin Invest. 2002 Mar;109(6):787-96.
221. Sun Y. Myocardial repair/remodelling following
infarction: roles of local factors. Cardiovasc Res. 2009 Feb 15;81(3):482-90.
222. Sun Y, Zhang JQ, Zhang J, Ramires FJ. Angiotensin II, transforming growth factor-beta1 and repair in the
infarcted heart. J Mol Cell Cardiol. 1998 Aug;30(8):1559-69.
223. Oklü R, Hesketh R. The latent transforming growth
factor beta binding protein (LTBP) family. Biochem J. 2000 Dec
15;352 Pt 3:601-10. Review.
224. Yan X, Chen YG. Smad7: not only a regulator, but also
a cross-talk mediator of TGF-β signalling.
Biochem
J. 2011 Jan 27;434(1):1-10.
225. Zhang YE. Non-Smad pathways in TGF-beta signaling. Cell Res.
2009 Jan;19(1):128-39. Review.
226. Bhattacharyya S, Ishida W, Wu M, Wilkes M, Mori Y,
Hinchcliff M, Leof E, Varga J. A non-Smad mechanism of fibroblast activation by
transforming growth factor-beta via c-Abl and Egr-1: selective modulation by
imatinib mesylate. Oncogene. 2009 Mar 12;28(10):1285-97.
227. Mori T, Kawara S, Shinozaki M, Hayashi N, Kakinuma T,
Igarashi A, Takigawa M, Nakanishi T, Takehara K. Role and interaction of
connective tissue growth factor with transforming growth factor-beta in
persistent fibrosis: A mouse fibrosis model. J Cell Physiol.
1999 Oct;181(1):153-59.
228. Ruiz-Ortega
M, Rodríguez-Vita J, Sanchez-Lopez E, Carvajal G, Egido J. TGF-beta signaling
in vascular fibrosis. Cardiovasc Res. 2007 May 1;74(2):196-06.
229. Dobaczewski M, Frangogiannis NG. Chemokines and
cardiac fibrosis. Front Biosci (Schol Ed). 2009 Jun 1;1:391-05. Review.
230. Widyantoro
B, Emoto N, Nakayama K, Anggrahini DW, Adiarto S, Iwasa N, Yagi K, Miyagawa K,
Rikitake Y, Suzuki T, Kisanuki YY, Yanagisawa M, Hirata K. Endothelial
cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through
stimulation of endothelial-to-mesenchymal transition. Circulation. 2010 Jun 8;121(22):2407-18.
231. Wynn TA. Cellular and molecular mechanisms of
fibrosis. J Pathol. 2008 Jan;214(2):199-10.
232.
Hausenloy DJ,
Yellon DM. The therapeutic potential of ischemic conditioning: an update. Nat
Rev Cardiol. 2011 Jun 21. doi: 10.1038/nrcardio.2011.85. [Epub ahead of print]
233. Gandhi MS, Kamalov G, Shahbaz AU, Bhattacharya SK,
Ahokas RA, Sun Y, Gerling IC, Weber KT. Cellular and molecular pathways to
myocardial necrosis and replacement fibrosis. Heart Fail Rev.
2011 Jan;16(1):23-34.
234. Navalta CP, Goldstein J, Ruegg L, Perna DA, Frazier JA. Integrating treatment and education for mood
disorders: an adolescent case report. Clin Child Psychol Psychiatry. 2006
Oct;11(4):555-68.
235. Müller AL, Dhalla NS. Role of various proteases in
cardiac remodeling and progression of heart failure. Heart Fail Rev.
2011 Jul 8. [Epub ahead of print]
236. Porter KE, Turner NA. Cardiac fibroblasts: at the
heart of myocardial remodeling. Pharmacol Ther. 2009 Aug;123(2):255-78.
237. Matter A, Girardier L, Hyde A, Blondel B. Development
of sarcoplasmatic reticulum in cultivated myocardial cells. Verh Anat
Ges. 1969;63:561-65.
238. Leask A. Potential therapeutic targets for cardiac
fibrosis: TGFbeta, angiotensin, endothelin, CCN2, and PDGF, partners in
fibroblast activation. Circ Res. 2010 Jun 11;106(11):1675-80. Review.
239. Chin LK, Yu
JQ, Fu Y, Yu T, Liu AQ, Luo KQ. Production of
reactive oxygen species in endothelial cells under different pulsatile shear
stresses and glucose concentrations. Lab Chip. 2011 Jun 7;11(11):1856-63.
Review.
240. Libby P. Current concepts of the pathogenesis of the
acute coronary syndromes. Circulation. 2001 Jul 17;104(3):365-72.
Review.
241. du Toit EF, Smith W, Muller C, Strijdom H, Stouthammer
B, Woodiwiss AJ, Norton GR, Lochner A. Myocardial susceptibility to
ischemic-reperfusion injury in a prediabetic model of dietary-induced obesity. Am J
Physiol Heart Circ Physiol. 2008 May;294(5):H2336-43.
242. Zhang S,
Picard MH, Vasile E, Zhu Y, Raffai RL, Weisgraber KH, Krieger M. Diet-induced
occlusive coronary atherosclerosis, myocardial infarction, cardiac dysfunction,
and premature death in scavenger receptor class B type I-deficient, hypomorphic
apolipoprotein ER61 mice. Circulation. 2005 Jun 28;111(25):3457-64.
243. Kolovou G, Giannakopoulou V, Vasiliadis Y, Bilianou H.
Effects of estrogens on atherogenesis. Curr Vasc Pharmacol. 2011 Mar
1;9(2):244-57. Review.
244. Clark C, Smith W, Lochner A, du Toit EF. The effects of gender and obesity on myocardial tolerance to ischemia. Physiol
Res. 2011 May 10;60(2):291-01.
245.
Ozer MK,
Parlakpinar H, Acet A. Reduction of ischemia--reperfusion induced myocardial
infarct size in rats by caffeic acid phenethyl ester (CAPE). Clin Biochem. 2004
Aug;37(8):702-05.
246. Teramoto N, Koshino K, Yokoyama I, Miyagawa S, Zeniya T, Hirano Y,
Fukuda H, Enmi J, Sawa Y, Knuuti J, Iida H. Experimental pig model of old
myocardial infarction with long survival leading to chronic left ventricular
dysfunction and remodeling as evaluated by PET. J Nucl Med. 2011 May;52(5):761-68.
247.
St Louis JD, Hughes
GC, Kypson AP, DeGrado TR, Donovan CL, Coleman RE, Yin B, Steenbergen C,
Landolfo KP, Lowe JE. An experimental model of chronic myocardial hibernation.
Ann Thorac Surg. 2000 May;69(5):1351-57.
248. Roth DM, White FC, Mathieu-Costello O, Guth BD, Heusch
G, Bloor CM, Longhurst JC. Effects of left circumflex Ameroid constrictor
placement on adrenergic innervation of myocardium. Am J Physiol. 1987
Dec;253(6 Pt 2):H1425-34.
249. Iannini JP, Spinale FG. The identification of
contributory mechanisms for the development and progression of congestive heart
failure in animal models. J Heart Lung Transplant. 1996
Nov;15(11):1138-50.
250. Sabbah HN, Stein PD, Kono T, Gheorghiade M, Levine TB,
Jafri S, Hawkins ET, Goldstein S. A canine model of chronic heart failure
produced by multiple sequential coronary microembolizations. Am J Physiol.
1991 Apr;260(4 Pt 2):H1379-84.
251. Suzuki M, Asano H, Tanaka H, Usuda S. Development and
evaluation of a new canine myocardial infarction model using a closed-chest
injection of thrombogenic material. Jpn Circ J. 1999 Nov;63(11):900-05.
252. van Wijngaarden J, Tobé TJ, Weersink EG, Bel KJ, de
Graeff PA, de Langen CD, van Gilst WH, Wesseling H. Effects of early
angiotensin-converting enzyme inhibition in a pig model of myocardial ischemia
and reperfusion. J Cardiovasc Pharmacol. 1992 Mar;19(3):408-16.
253. Klocke R, Tian W, Kuhlmann MT, Nikol S. Surgical
animal models of heart failure related to coronary heart disease. Cardiovasc
Res. 2007 Apr 1;74(1):29-38.
254. Chorro FJ, Trapero I, Such-Miquel L, Pelechano F,
Mainar L, Cánoves J, Tormos A, Alberola A, Hove-Madsen L, Cinca J, Such L.
Pharmacological modifications of the stretch-induced effects on ventricular
fibrillation in perfused rabbit hearts.Am J Physiol Heart Circ Physiol. 2009
Nov;297(5):H1860-69.
255. Bachmann E, Weber E. Recirculating, retrograde heart
perfusion according to the Langendorff method for evaluation of
MTG--methyl-2-tetradecylglycidate, McNeil 3716--cardiomyopathy. Pharmacol
Toxicol. 1993 Feb;72(2):98-06.
256. Brenner P, Hinz M, Huber H, Schmoeckel M,
Reichenspurner H, Meiser B, Hammer C, Reichart B. Influence of ischemic time on
hyperacute xenograft rejection of pig hearts in a working heart perfusion model
with human blood. Transpl Int. 2000;13 Suppl 1:S494-503.
257. Vigne P, Tauc M, Frelin C. Strong dietary restrictions
protect Drosophila against anoxia/reoxygenation injuries. PLoS One.
2009;4(5):e5422.
258. Cripps RM, Olson EN. Control of cardiac development by
an evolutionarily conserved transcriptional network. Dev Biol. 2002 Jun
1;246(1):14-28. Review
259. Schnabel K, Wu CC, Kurth T, Weidinger G. Regeneration
of cryoinjury induced necrotic heart lesions in zebrafish is associated with
epicardial activation and cardiomyocyte proliferation. PLoS One. 2011 Apr
12;6(4):e18503.
260. Chablais F, Veit J, Rainer G, Jaźwińska A. The
zebrafish heart regenerates after cryoinjury-induced myocardial infarction. BMC Dev
Biol. 2011 Apr 7;11:21.
261. Phoon CK. Imaging tools for the developmental
biologist: ultrasound biomicroscopy of mouse embryonic development. Pediatr
Res. 2006 Jul;60(1):14-21.
262. Endoh M. Force-frequency relationship in intact mammalian
ventricular myocardium: physiological and pathophysiological relevance. Eur J
Pharmacol. 2004 Oct 1;500(1-3):73-86. Review.
263. Haghighi K,
Kolokathis F, Pater L, Lynch RA, Asahi M, Gramolini AO, Fan GC, Tsiapras D,
Hahn HS, Adamopoulos S, Liggett SB, Dorn GW 2nd, MacLennan DH, Kremastinos DT,
Kranias EG. Human phospholamban null results in
lethal dilated cardiomyopathy revealing a critical difference between mouse and
human. J Clin Invest. 2003 Mar;111(6):869-76.
264. Hasenfuss G. Animal models of human cardiovascular
disease, heart failure and hypertrophy. Cardiovasc Res. 1998
Jul;39(1):60-76. Review
265. Bers DM. Cardiac Na/Ca exchange function in rabbit,
mouse and man: what's the difference? J Mol Cell Cardiol. 2002
Apr;34(4):369-73.
266. Shiomi M, Ito T, Yamada S, Kawashima S, Fan J.
Development of an animal model for spontaneous myocardial infarction (WHHLMI
rabbit). Arterioscler Thromb Vasc Biol. 2003 Jul 1;23(7):1239-44.